Weekly Math HOMEWORK

March 2 - 6

DUE WEDNESDAY: "Perimeter" AND "Area" (circled problems only)

DUE THURSDAY: "Line Plot Practice" (2 pgs)

DUE FRIDAY: "Units of Time" AND "Elapsed Time"

My timed test on FRIDAY is on the _____ facts!

Class website: http://mrsbucksmathclass.weebly.com

Name	
Parent Signature	

Remember, to find the **perimeter** of a figure, **add** the lengths of all the sides of the figure.

Find the perimeter.

1.

2.

3.

4.

Solve each problem.

- 5. Jeff is making a rectangular picture frame. If the frame is 36" × 24", what is the perimeter of the frame?
- 6. Lisa needs enough trim to go around the edge of her quilt. If the quilt measures 96" × 72", how many inches of trim will Lisa beed to buy?
- 7. Greg is building a dog pen. Two of the sides are 45', and the other two sides are 28'. How many feet of fencing will Greg need?
- 8 Reid is gluing string around the edge of his kite. If the sides measure 12", 16", 14", and 13", how many inches of string does Reid need?

 $oxedsymbol{\square}$ I can use formulas to find the perimeter of rectangles.

Name

Circled problems only!

rreadue Wed.

4.MD.3

Remember, to find the **area** of a rectangular figure, **multiply** the length by the width.

10 m 3 × 10 = **30 sq. m**

Find the area of each shape.

1.

2.

3.

4.

Solve each problem.

- 5. Holly makes a rectangular kite that is 15" × · 28". What is the area of Holly's kite?
- 6. Linden frames a poster that is 25" × 39". What is the area of Linden's poster?
- 7. If Maria's garden measures 6 yd. × 9 yd, what is the area of her garden?
- 8. Travis buys a piece of canvas for his project that measures 15' × 33'. What is the area of the canvas?

 \Box I can use formulas to find the area of rectangles.

73

Line Plot Practice

Complete the line plot for the given set of data.

1. amount of meat on sandwich: $\frac{3}{8}$ lb, $\frac{1}{2}$ lb, $\frac{1}{4}$ lb, $\frac{1}{8}$ lb, $\frac{1}{4}$ lb, $\frac{1}{2}$ lb, $\frac{1}{8}$ lb, $\frac{1}{4}$ lb, $\frac{1}{2}$ lb, $\frac{1}{8}$ lb, $\frac{1}{4}$ lb, $\frac{3}{8}$ lb

2. lengths of ribbons: $\frac{1}{2}$ yd, $\frac{1}{3}$ yd, $\frac{5}{6}$ yd, $\frac{1}{3}$ yd, $\frac{1}{6}$ yd, $\frac{1}{2}$ yd, $\frac{1}{2}$ yd, $\frac{1}{2}$ yd, $\frac{5}{6}$ yd, $\frac{1}{3}$ yd

Lengths of Ribbons (in yards)

Amount of Meat on Sandwich (in pounds)

REMEMBER Draw an X for each piece of data.

Use the line plot for problem 1 to complete questions 3-5.

- 3. The total number of sandwiches is _____
- 4. The total amount of meat in the sandwiches that have $\frac{1}{2}$ pound of meat is _____ pounds.
- 5. How much more meat is in all the sandwiches having $\frac{1}{2}$ pound of meat than there is in all those having $\frac{3}{8}$ pound of meat?

Use the line plot for problem 2 to complete questions 6-8.

- 6. There are _____ ribbons that are $\frac{1}{2}$ yard long.
- 7. The total length of the ribbons that are $\frac{1}{3}$ yard long is _____ yards.
- **8.** The difference in length between the longest ribbon and the shortest ribbon is _____ yard.

Line Plot Practice

Make a line plot to show the data.

time spent on school bus: $\frac{1}{4}$ hr, $\frac{1}{3}$ hr, $\frac{1}{2}$ hr, $\frac{1}{3}$ hr, $\frac{1}{6}$ hr, $\frac{1}{2}$ hr, $\frac{1}{4}$ hr, $\frac{1}{6}$ hr, $\frac{1}{4}$ hr, $\frac{1}{3}$ hr, $\frac{5}{12}$ hr

Use the line plot to answer questions 10 and 11.

Growth of Seedlings in One Week (in feet)

Choose the best answer.

10. Which height did the greatest number of seedlings have?

A.
$$\frac{1}{6}$$
 ft

B.
$$\frac{1}{3}$$
ft

C.
$$\frac{1}{2}$$
ft

D.
$$\frac{5}{6}$$
 ft

11. How many seedlings were taller than $\frac{1}{3}$ foot?

12. CREATE Write a real-world problem about miles using the data in the line plot.

Units of Time

Due Friday!

Some analog clocks have an hour hand, a minute hand, and a **second** hand.

There are 60 seconds in a minute. The second hand makes 1 full turn every minute. There are 60 minutes in an hour. The minute hand makes 1 full turn every hour. The hour hand makes 1 full turn every 12 hours.

You can think of the clock as unrolling to become a number line.

The hour hand moves from one number to the next in 1 hour.

The minute hand moves from one number to the next in 5 minutes.

Use the table at the right to change between units of time.

1 hour = 60 minutes, or 60×60 seconds, or 3,600 seconds.

So, 1 hour is 3,600 times as long as 1 second.

1 day = 24 hours, so 3 days = 3×24 hours, or $\frac{72}{}$ hours.

1 year = 12 months, so 5 years = 5×12 months, or 60 months.

Units of Time

- 1 minute = 60 seconds
- 1 hour = 60 minutes
- 1 day = 24 hours
- 1 week = 7 days
- 1 year = 12 months
- 1 year = 52 weeks

Complete.

Problem Solving • Elapsed Time Due Friday!

Opal finished her art project at 2:25 P.M. She spent 50 minutes working on her project. What time did she start working on her project?

Read the Problem			
What do I need to find?	What information do I need to use?	How will I use the information?	
I need to find Opal's start time.	End time:	I can draw a diagram of a clock. I can then count back 5 minutes at a time until I reach 50 minutes.	

Solve the Problem

I start by showing 2:25 P.M. on the clock. Then I count back 50 minutes by 5s.

Think: As I count back, I go past the 12. The hour must be 1 hour less than the ending time.

The hour will be 1 o'clock

So, Opal started on her project at ___1:35 P.M.

Draw hands on the clock to help you solve the problem.

1. Bill wants to be at school at 8:05 A.M. It takes him 20 minutes to walk to school. At what time should Bill leave his house?

Bill should leave his house at _____

2. Mr. Gleason's math class lasts 40 minutes.

Math class starts at 9:55 A.M. At what time does math class end?

Math class ends at ______

3. Hannah rode her bike for 1 hour and 15 minutes until she got a flat tire at 2:30 P.M. What time did Hannah start riding her bike?

Hannah started riding her bike at _____

