WEEKIT MANGENTAL

December 8 - 12

<u>Due WEDNESDAY:</u> "Write Fractions as Sums" (2 pgs!)

<u>Due THURSDAY:</u> "Add and Subtract Fractions" (2 pgs!)

Due FRIDAY: "Rename Fractions & Mixed Numbers" (1 pg)

My timed test on FRIDAY is on the _____ facts!

Class website: http://mrsbucksmathclass.weebly.com

DUE WEDNESDAY!

Lesson 10.2

Write Fractions as Sums

COMMON CORE Georgia Performance Standard MCC4.NF.3b

Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.

Write the fraction as a sum of unit fractions.

$$\frac{1}{1.\frac{4}{5}} = \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5}$$

Think: Add $\frac{1}{5}$ four times.

3.
$$\frac{6}{12}$$
 = _____

Write the fraction as a sum of fractions three different ways.

5. $\frac{7}{10}$

Problem Solving REAL WORLD YES, You do this problem, too!

7. Miguel's teacher asks him to color $\frac{4}{8}$ of his grid. He must use 3 colors: red, blue, and green. There must be more green sections than red sections. How can Miguel color the sections of his grid to follow all the rules?

DUE WEDNESDAY!

Lesson Check MCC4.NF.3b

1. Jorge wants to write $\frac{4}{5}$ as a sum of unit fractions. Which of the following should he write?

(A)
$$\frac{3}{5} + \frac{1}{5}$$

(B)
$$\frac{2}{5} + \frac{2}{5}$$

$$\bigcirc \frac{1}{5} + \frac{1}{5} + \frac{2}{5}$$

①
$$\frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5}$$

2. Which expression is equivalent to $\frac{7}{8}$?

$$\triangle \frac{5}{8} + \frac{2}{8} + \frac{1}{8}$$

(B)
$$\frac{3}{8} + \frac{3}{8} + \frac{1}{8} + \frac{1}{8}$$

$$\bigcirc \frac{4}{8} + \frac{2}{8} + \frac{1}{8}$$

①
$$\frac{4}{8} + \frac{2}{8} + \frac{2}{8}$$

Keeping Skills Sharp & MCC4.0A.3, MCC4.0A.4, MCC4.NBT.6, MCC4.NF.3a Yes, you do these, too!

- 3. An apple is cut into 6 equal slices. Nancy eats 2 of the slices. What fraction of the apple is left?
 - **A** $\frac{1}{6}$
 - **B** $\frac{2}{6}$
 - $\mathbb{C}^{\frac{3}{6}}$
 - ① $\frac{4}{6}$

- **4.** Which of the following numbers is a prime number?
 - (A) 1
 - **(B)** 11
 - **(C)** 21
 - (D) 51
- 5. A teacher has a bag of 100 unit cubes. She gives an equal number of cubes to each of the 7 groups in her class. She gives each group as many cubes as she can. How many unit cubes are left over?
 - (A) 1
 - (B) 2
 - © 3
 - **(D)** 6

- 6. Jessie sorted the coins in her bank. She made 7 stacks of 6 dimes and 8 stacks of 5 nickels. She then found 1 dime and 1 nickel. How many dimes and nickels does Jessie have in all?
 - A 84
 - (B) 82
 - **©** 80
 - **(D)** 28

DUE THURSDAY!

Name.

Lesson 10.5

Add and Subtract Fractions

COMMON CORE

Georgia Performance Standard MCC4.NF.3d

Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.

Find the sum or difference.

1.
$$\frac{4}{12} + \frac{8}{12} = \frac{12}{12}$$

2.
$$\frac{3}{6} - \frac{1}{6} =$$

3.
$$\frac{4}{5} - \frac{3}{5} =$$

4.
$$\frac{6}{10} + \frac{3}{10} =$$
 6. $\frac{1}{4} + \frac{2}{4} =$

5.
$$1-\frac{3}{8}=$$

6.
$$\frac{1}{4} + \frac{2}{4} =$$

7.
$$\frac{9}{12} - \frac{5}{12} =$$
 8. $\frac{5}{6} - \frac{2}{6} =$

8.
$$\frac{5}{6} - \frac{2}{6} =$$

9.
$$\frac{2}{3} + \frac{1}{3} =$$

Problem Solving REAL WORLD Yes, you do these problems, too!

Use the table for 10 and 11.

- 10. Guy finds how far his house is from several locations and makes the table shown. How much farther away from Guy's house is the library than the cafe?
- 11. If Guy walks from his house to school and back, how far does he walk?

Distance from Guy's House				
Location	Distance (in miles)			
Library	9 10			
School	<u>5</u> 10			
Store	7 10			
Cafe	4/10			
Yogurt Shop	6 10			

Module 10 P117

DUE THURSDAY!

Lesson Check Mcc4.NF3d

- 1. Mr. Angulo buys $\frac{5}{8}$ pound of red grapes and $\frac{3}{8}$ pound of green grapes. How many pounds of grapes did Mr. Angulo buy in all?
 - \bigcirc $\frac{1}{8}$ pound
 - $\bigcirc \frac{2}{8}$ pound
 - C 1 pound
 - (D) 2 pounds

2. Which equation does the model below represent?

- $\bigcirc \frac{8}{8} \frac{5}{8} = \frac{3}{8}$
- ① $\frac{7}{8} \frac{2}{8} = \frac{5}{8}$

Keeping Skills Sharp BMCC4.DA.3, MCC4.NBT.5, MCC4.NB3d YES, YOU do these problems, to.

- 3. There are 6 muffins in a package. How many packages will be needed to feed 48 people if each person has 2 muffins?
 - A) 4
- **©** 16
- (B) 8
- D 24

- 4. Camp Oaks gets 32 boxes of orange juice and 56 boxes of apple juice. Each shelf in the cupboard can hold 8 boxes of juice. What is the least number of shelves needed for all the juice boxes?
 - (A) 4
- © 11
- **B** 7
- **(D)** 88

- 5. A machine makes 18 parts each hour. If the machine operates 24 hours a day, how many parts can it make in one day?
 - A 302
 - (B) 332
 - © 362
 - D 432

6. Which equation does the model below represent?

DUE FRIDAY!

Lesson 11.1

ractions and Mixed Numbers

COMMON CORE

Georgia Performance Standard MCC4.NF.3b

Build fractions from unit fractions by applying and extending previous understandings of operations on

Write the mixed number as a fraction.

Write the mixed number as a fraction.

1.
$$2\frac{3}{5}$$

2. $4\frac{1}{3}$

Think: Find 5 + 5 + 3 .

 5 + 3 + 3 .

 5 + 3 + 3 .

 5 + 3 + 3 + 3 .

 5 + 3

$$3.1\frac{2}{5}$$

$$4.3\frac{2}{3}$$

5. $4\frac{1}{8}$

 $\sqrt{2}$ 5 $\frac{1}{2}$

Write the fraction as a mixed number.

Houghton Miffin Harcourt Publishing Company

Problem Solving REAL WORLD

yes, you do these problems, too!

A recipe calls for $2\frac{2}{4}$ cups of raisins, but Julie only has a $\frac{1}{4}$ -cup measuring cup. How many $\frac{1}{4}$ cups does Julie need to measure out $2\frac{2}{4}$ cups of raisins?

Which of the following is equivalent to $\frac{16}{3}$?

Module 11 P119